Manuscript #14

Опубликовано


Equation 1:

ооооои. о

\left(133+x\right)^{2n}=1+\frac{nx}{1!}+\frac{n\left(n\hbox{--}1\right)x^{2}}{2!}+\ldots

Equation 2:

f\left(x\right)=a_{0}+\sum _{n=1}^{\infty }\left(a_{n}\cos \frac{n\pi x}{L}+b_{n}\sin \frac{n\pi x}{L}\right)Equation 4:

e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots ,-\infty < x< \infty (5)

Equation 5:

\sin \alpha \pm \sin \beta =2\sin \frac{1}{2}\left(\alpha \pm \beta \right)\cos \frac{1}{2}\left(\alpha \mp \beta \right) оииоь

Equation 6: A copy from live file

\sin \alpha \pm \sin \beta =2\sin \frac{1}{2}\left(\alpha \pm \beta \right)\cos \frac{1}{2}\left(\alpha \mp \beta \right)

fvevef

Equation 1:

\left(1+x\right)^{n}=1+\frac{nx}{1!}+\frac{n\left(n\hbox{--}1\right)x^{2}}{2!}+\ldots

\begin{array}{r} dy=\mathrm{c}\mathrm{o}\mathrm{s}x\,dx, \end{array}

\begin{array}{r} \frac{d^{2}y}{dx^{2}}=0, \end{array}

$\begin{array}{r} \frac{\left[1+\left(\frac{dy}{dx})^{2}\right]^{\frac{3}{2}}}{\frac{d^{2}y}{dx^{2}}}=r, \end{array}$

\begin{array}{r} x\frac{dy}{dx}+\frac{a}{\frac{dy}{dx}}=y \end{array}

Latex formulas

k_{n+1} = n^2 + k_n^2 - k_{n–1}

Latex formulas

k_{n+1} = n^2 + k_n^2 - k_{n–1}

Сводка

Александра Котова